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ABSTRACT

Vibrational analyaia of rotating machinery ia able to
identify a large number of ayatem ilia. Shaft bow, ahaft
unbalance and coupling miaal ignmenta make up the major
portion of the observed vibrational frequency apectra of
rotating machinery. These vibrational spectra can be used to
determine the type of rotating system abnormality, the
degree of misalignment and the rate of alignment
degradation

.

The proper joining of rotating machinery is a critical issue
with high power and high speed equipments. Couplings used to
join machinery have a broad apectrum of characteristics and
specific purposes. Couplings are uaed to compensate for
axial, lateral and angular misal ignmenta . In addition,
couplings may exhibit conatant or non-conatant input veraua
output apeed relationships. The importance of mating a
driving and driven piece of equipment with the properly
deaigned coupling ia paramount.

In the following report the author discusses numerous types
of couplings, the behavioral character iatica of couplinga
and the considerat ions which must be taken into account when
selecting a coupling for a rotating ayatem. The analyaia
which follows lists the various alignment discrepancies
which can be detected by vibrational analysis and the
requirementa for non-constant and constant velocity
character iatica of couplings. In addition, numerous types
of couplings are catalogued and discussed.
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1.0 INTRODUCTION

Misalignment is an important cause of vibration problems in

rotating machinery. Misalignment in the context of this

thesis includes any deviation from the ideal case in which a

straight shaft rotates in perfectly aligned bearings.

Misalignment can apply to a single piece of rotating

equipment with a bent shaft or a straight shaft forced to

rotate in three or more bearings which are not coaxially

aligned. It can apply to two or more pieces of coupled

machinery whose shafts are not properly aligned. In this

thesis a survey is made of the various types of

misalignments often encountered in rotating machinery and

the vibrational characteristics which arise due to these

misalignments are examined. In particular lateral, axial

and angular coupling misalignments will be studied as a

function of flexible coupling vibrational behavior. This

discussion will include bent or bowed rotors, close-coupled

systems, constant and non-constant velocity flexible

couplings and axial motion couplings.

The coupling of driving to driven pieces of rotating

machinery has historically been a problem in turbo-machinery





engineering. Once the idea of segregating the driven and

driving mechanisms onto separate shafts developed, coupling

issues have arisen. Numerous techniques for joining these

shafts have evolved. These methods can briefly be

generalized into three categories: 1> close-coupled shafts

which includes all mechanisms which directly fasten (usually

bolted) axially aligned driving to driven shafts; 2) belt,

chain or gear driven couplings in which parallel but

radially offset shafts are joined, quite often through speed

increasing or decreasing wheel ratios; 3) flexible coupled

shafts engulf all fastening mechanisms in which a coupling

is inserted between the driving and driven shaft for

purposes of easing the joining procedure. The later

category of couplings can accommodate misalignments (either

intentional or unintentional) in angular, lateral and/or

axial directions.

This paper will focus on how a coupling malady can be

detected through vibrational analysis. The trend to build

larger and higher speed drive mechanisms has increased

incidences of coupling problems. In addition to the higher

speed and horsepower requirements, the operating environment

places a premium on quietness and minimal mechanical

vibration to reduce personnel and equipment degradation.

Quietly operating machinery operating in a work place will

improve worker productivity. In Naval applications quietly
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operating machinery translates into reduced detectabi 1 ity

.

Most coupling abnormalities cause vibrational problems which

are easily detected by current state-of-the-art spectrum

analyzers and shaft orbit detectors. Current coupling

wisdom states that coupling problems tend to show up as

vibrations with frequencies corresponding to 1/2, 1 or 2

times the operating angular velocity (Maxwell, 1980). A

frequency spectrum similar to figure 1-1 may result from a

poorly coupled rotating system. A perfectly aligned

coupling would exhibit none of these spikes where as a

vibrational problem may be characterized by a single spike

or combination of spikes. The following pages will discuss

causes for each of these spikes independently and then show

how through superposition principles, a number of

misalignment conditions can yield spectra similar to figure

1-1. It should be noted here that directionality of the

above spectra has not been specified but rather lumped.

Vibrations could be either axial, radial or torsional in

direction. A specific coupling problem could yield

vibrations in one or all of the above directions. In the

specific discussions which follow directionality will be

specified. The organization which follows will take the

shaft coupling problem through an evolving chronology from

simple to complex geometric shaft arrangements.
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2.6 SING LE SHAFT VIBRATIONS

A aingle uncoupled rotor may exhibit vibration problems for

a variety of reasons. Sources of these vibrations may

include shaft bearing misalignments, bowed rotors and mass

unbalance. Bearing-shaft misalignments may from the

vibrational analysis point of view be the hardest to detect.

A shaft-bearing misalignment occurs when the bearing journal

placements are not axially concentric and a straight shaft

is forcefully fitted into the bearings. Figure 2-1 depicts

an extreme case of a shaft distorted by bearings not axially

aligned. The forces exerted by each of the bearing

foundations cause the shaft to bend. As this forcefully

bent shaft rotates, the forces exerted by the foundations

remain constant as the shaft rotates at its operating

angular velocity. Consequently, vibrational energy is not

cyclically transmitted to the foundations or to the

receivers at the sensing transducer (accelerometers) sites.

Although not readily detectable with accelerometer and

spectrum analyzer techniques, the misaligned bearing case is

worth examining in some detail prior to proceeding on to

other cases.

When the shaft in a misaligned journal set rotates one

11





Shaf"t placed in misaligned bearings.

FIGURE 2-1
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revolution, the shaft bends with the displacement of the

shaft at point B being equal to the offset "b" of figure

2-1. This is similar to an ordinary beam in bending except

that the bending action is angularly continuous throughout

the rotation of the shaft. Consequently, as the shaft

rotates through say one revolution the shaft outer fibers go

through a tension-compression cycle. These alternating

tension to compression cycles give rise to lateral fatigue

loadings on the shaft. In the case of a simple beam,

laterally loaded fatigue fracture can take place after a

specific number of cycles providing the applied stresses are

above the fatigue endurance limit of the shaft material.

Fracture mechanics theory holds and the lower the applied

stress the greater the number of cycles which can be

withstood prior to fracture. In general, fatigue loading

can be broken down into two categories. In low-cycle

fatigue, fracture after 103 cycles is usually considered

where as in "high-cycle fatigue" fracture after several

million cycles is considered (Masabuchi, 1980). For a motor

driven shaft operating at 1800 revolutions per minute cyclic

loading of the misaligned shaft occurs at a rate equal to 30

cycles per second. Table 2-1 shows the load cycles for

various periods of time. As can be readily seen for

continuously operated machinery we are concerned with

"high-cycle" fatigue loading. Fatigue fracture takes place

primarily in three stages: 1) crack initiation, 2) crack

13





TIME CYCLES

1 h o u r
1 day
1 week
1 month
1 year

nziaxiizi 3

£. 6XliZi fe

18. lXltf6

77XliZt&

933XliZi&

Cyclic loading rates for a misaligned shaft operating at
I81Z11Z1 rpm.

TABLE £-1
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slow growth and 3) unstable fracture. Fatigue crack

initiation is generally started at the surface at some site

of manufacture or fabrication imperfection. Hence, highly

polished surfaces will resist crack initiation. Once a

crack is initiated crack growth is slow but continuous as

the cyclic loading is continued. As the crack propagates

laterally through the shaft the residual stress on the shaft

cross section increases since the effective cross sectional

area of the shaft is decreasing. Similar to repeated bending

of a piece of stiff wire, as the number of bending cycles is

increased the resistance to bending becomes less. As the

crack propagates with each cycle, the crack growth rate also

increases with each loading cycle. This crack growth

continues until the remaining effective shaft cross section

is unable to support the load onset by the misaligned

bearings and the shaft fractures causing a catastrophic

failure

.
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2.1 ROTATING MACHINERY ON A MOVING PLATFORM

A great deal of effort is extended to ensure rotating

machinery shafts and bearings are axially aligned. However,

with machinery placed on moving platforms such as ships,

aircraft or automobiles this alignment may be distorted due

to motion of the vehicle. For example a Naval ship may have

drive shafts extending for 150 feet or more from a main

engine to a propeller. The ship when at sea may experience

bending motions brought on by various sea states and loading

conditions. In these cases, as the ship moves across the

waves a repeated bending of the shaft may occur (See figure

2-2) . As the ship moves through the waves, the ship and

thus the shafting is subjected to repeated bending in the

lateral direction. In propulsion equipment the rotating

angular velocity of the machinery is usually much faster

than the lateral loading cycles. This in essence makes the

case of the ship much the same as the misaligned journal

bearing case just discussed. Once again looking at high

cycle fatigue, we are concerned with fracture after several

million loading cycles. For a ship operating at 200 shaft

revolutions per minute table 2-2 indicates the time required

to accumulate relatively large numbers of cycles. Therefore

ensuring shaft bearing alignment may not always be

sufficient. In cases of machinery mounted on mobile

16
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(a) vessel In calm water

(b) vessel In sagging condition

Cc) vessel In hogging condition

FIGURE 2-2

17





TIME CYCLES

1 hour lEXltf 3

1 day E88XI1Z1 3

1 week EXltf*
1 month 8. 6XliZi&

1 year 103X113*"

3tf years 3110X10*

Cyclic loading rates for a misaligned shaft operating at
.•iZii? rpm.

TABLE E'-E
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platforms the strength of the shaft or bearing placements

may need to be over designed to withstand the loading

fatigue instigated by forces external to the equipment.

While bearing-shaft alignment problems may not show up in

vibrational analysis techniques their importance cannot be

ignored. It is important to note that axial bearing

alignment is essential in preventing bearing damage, but

also in preventing failures due to fatigue. In cases where

shaft-bearing alignment cannot be maintained due to

placement on moving platforms shaft strength over design

should be utilized to prevent failures.

19





2.2 BOWED ROTORS

For varieties of reasons single shafts are often operated

which when unsupported are not axially in line. These

shafts or rotors are said to be bowed. A bowed rotor may be

the result of incorrect manufacturing, incorrect

installation or improper operation. However, in all cases

the bowed rotor phenomenon shows up in vibrational analysis

as a one times rotating speed spike, (see figure 2-3) . These

one times rotational operating speed spikes are indicative

of two types of bowed rotor phenomena. The first case being

a bowed rotor supported by axially in line bearings. The

second type of bowed rotor phenomena occurs when a bowed

rotor is forcefully aligned in axially concentric journal

bearings.

For a shaft bent such that the centroid of mass of the rotor

does not lie on the axis of rotation is analytically the

same as an unbalanced rotating disk. These configurations

can be seen in figures 2-4a and 2-4b. A rotor can be bowed

for a variety of reasons. In steam turbines improper heating

or cooling of the rotor will leave a residual bow, poor

fitting of rotating elements could cause permanent offset or

20
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Bent shaft tn aligned beartngs

Unbalanced rotating disk
(b)

BENT ROTOR BEHAVIOR VHEN PLACED IN
AXIALLY ALIGNED BEARINGS.

FIGURE 2-4

shaft p

axis

Bent rotor placed m
axial aligned bearings
Is similar m
analytic characteristics as
an unbalanced rotating disk
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poorly manufactured shafts can be axially unsymmetric. In

all cases the unbalanced shaft can be modeled as a rotating

disk with an element whose centroid does not coincide with

the shaft axis of rotation. This unbalance is represented

by a centroid of mass "M" with off-set "r" in figure 2-4b.

Therefore, as the shaft rotates at operating speeds, shaft

or machinery vibrations exist. Using a FFT spectrum analyzer

and an accelerometer oriented radially from the shaft, a

spike coinciding with the machine operating frequency can be

seen. By marking the shaft with light reflecting tape to

establish the key phasor and using an optical sensor the FFT

spectrum analyzer can be used in such a way to determine the

phase relationship of the shaft bow or unbalance with

respect to the key phasor. Figure 2-5 shows this simple test

set-up. The transmitted vibrational force which results from

the shaft unbalance has been extensively analyzed by

Dimentberg (1961) and Nichols (1976). It was shown that a

rotating unbalanced disk on a simply supported shaft

exhibited a vibrational magnitude dependent on the disk

mass, radial offset from the rotating axis and rotating

angular velocity squared. This relationship is shown in

equation one.

F = MC Gi
2

)r (1)

It should be noted that the fluctuating vibrational force is

23
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of a bowed or unbalanced rotor.

FIGURE 2-5
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strongly dependent on the angular velocity. Quite clearly,

the vibrational force increases rapidly in magnitude as the

operating angular frequency is increased.

The second type of bowed rotor phenomena is the case of a

bowed rotor being forcefully aligned in a set of axially

concentric journals. In this case forces sufficient to bend

the shaft to an axially aligned position are exerted by the

bearing journals. This configuration is shown in figures

2-6(a and b> . Once forced into position the journal

bearings physically hold the shaft alignment. In this

aligned position the shaft is no longer dynamically

unbalanced. The shaft exerts a reaction force on the

journal bearings equivalent to the force needed to deflect

the bent shaft into its axially aligned position. This

bending force is then exerted radially outward from the

shaft onto the journal bearing. Consequently, as the shaft

rotates the force exerted by the shaft rotates

circumferentially around the journal. This force remains

constant since there is no longer an unbalance and is equal

to the static deflection force described above. Therefore,

the transmitted vibrational force will be equal to the

static deflection force at all angular velocities and will

not change in magnitude as a function of rotating angular

velocity. Subsequently, for the case of the bowed rotor

placed in axially aligned journals there will be a

25
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bent rotor forced Into aligned Journal bearings
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FIGURE 2-6
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vibrational force component of constant amplitude at

frequencies corresponding to the system's operating angular

velocity. It can now be seen that for the cases of bowed

rotors there are two types of vibrational symptoms. In the

case of the bowed or unbalanced rotor there is a force

component whose magnitude increases as the square of the

operating frequency. In the second case the physically

aligned bowed rotor has vibrational force components of

constant magnitude independent of angular velocity. In both

cases the vibrations occur at frequencies corresponding to

one-times the operating angular frequency. However, the two

types of bowed rotor phenomena are discernible because for a

bowed rotor placed between axially concentric bearings the

resulting vibrational amplitudes increase as a function of

the angular velocity squared. For the case of a bent rotor

forcefully aligned in axially concentric bearings, the

vibrational amplitude remains constant as the rotating

angular frequency is increased (i.e. the vibrational

amplitude is not angular frequency dependent).

Machinery operated with bowed rotors will always exhibit the

one times rpm spike, but the practical consequences of the

bowed rotor are more severe. As the rotor rotates inside

its journals uneven or excessive bearing loading occurs. If

this unsymmetr ical loading is severe enough the oil film

support can break down causing tribologic material failure

27





on the bearing surfaces, which in turn can lead to equipment

catastrophic failure. In addition, rotation of the rotor

outside its design orbit can cause collision of close

tolerance components as in the vanes of steam and gas

turbines leading to total destruction of the rotor and

stator sections. Also, quieting is an important parameter

and often times the mechanical vibration will exhibit a loud

undesirable noise.

Today many equipments routinely operate at speeds in excess

of many multiples of their rotors critical speed. As stated

above a bowed rotor causes a forced vibration on the

rotating system. When this vibration occurs at one of the

resonant frequencies of the rotating shaft, large amplitude

vibrations could result and lead to severe equipment damage.

Therefore in high speed rotating machinery, rotor bow

conditions due to a bent rotor forcefully aligned into

axially concentric bearings or a bent rotor leading to

unbalance must be minimized.

28





3.0 CONSTANT AND NON-CONSTANT VELOCITY COUPLINGS

In the previous sections problems associated with single

rotor systems were discussed. The following sections of

this paper will discuss vibrational problems associated with

multiple rotor configurations. The connecting points in

multiple rotor systems can give rise to a source of

vibrational energy. Flexible couplings are often used to

join the driving and driven ends of a multiple rotor system.

A flexible coupling is a device used to transmit torque or

power between two shafts which may or may not be co-linear.

Although, gear and gear arrangement couplings fit into the

definition of flexible couplings, they will not be treated

in this study. In general couplings can be grouped into

three basic categories; close-coupled, non-constant velocity

couplings and constant velocity couplings.

3.1 CLOSE-COUPLED ROTORS

Close-coupled rotors consist of driving and driven rotors

which are in theory axially aligned and rigidly fastened.

Figure 3-1 shows an example of a hard coupled dual rotor

set. This hard or close-coupled arrangement can tolerate

29





Close coupled motor—generator set.

FIGURE 3-1
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very little mechanical misalignment. Either lateral or

angular misalignment will result in skewing of the rotor

combinations. Figure 3-2 ( a and b ) shows examples of

lateral and angular misalignments. These undesirable

misalignments will give rise to lateral vibrations at a

frequency of one times the operating frequency which is

similar to the bowed rotor vibrational frequency discussed

earlier in this paper. In addition the closed coupled

system must be accurately axially aligned to prevent damage

to journal and thrust bearings. Therefore, close coupled

devices are rarely used in major high-horsepower and high-

velocity industrial equipment but rather are useful for low-

power and low rpm operations or when exact alignments can be

accomplished and maintained.
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3.2 NON-CONSTANT VELOC ITY COU PLINGS

Non-constant velocity couplings are single element devices

which when used to couple rotors can generally tolerate a

significant amount of lateral and/or angular misalignment. A

common type of flexible coupling which can be used to

compensate or allow angular misalignments are universal

joints ( commonly called Hooke's Joints or Cardan Joints).

As can be seen in figure 3-3 (a through c), a universal or

Cardan joint consists of a drive yoke which is rigidly

fastened to the drive shaft, a driven yoke which is rigidly

fastened to the driven shaft and an orthogonal cross-pin

which is used to connect the driving yoke to the driven

yoke. The cross-pin is an orthogonal cross with each of its

four members extending radially outward from the center.

Opposite ends of each cross-pin member mate up to the

driving and driven yokes. The ends of each cross-pin extend

through sleeves on the respective yokes. This connection is

similar to a shaft and journal junction. A mechanical

fastener is then used to prevent the cross-pin from sliding

free of the yoke. Once the yokes are attached to the

cross-pin, the universal joint is assembled. In this

assembled position each yoke is free to rotate about the

axis of the yoke's attached cross-pin member. Due to the
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FIGURE 3-3
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orthogonal construction of the cross-pin, the planes of

rotation of each of the yokes are orthogonal. It is the

ability of the yokes to rotate about their respective

cross-pin members which provides the universal joint

flexibility. The universal joint is a flexible coupling

which transmits torque and angular velocity with a mean

transmission ratio equal to unity. However, the coupling

when not in an axial aligned position does not transmit a

constant velocity of rotation throughout each cycle of the

driving rotor. In addition to being non-constant in

velocity this asymmetric configuration gives rise to

vibrations at even multiples of the rotating frequency.

In the double rotor system joined by a single universal

joint, the non-constant velocity terms arise from the fact

that the cross-pin does not remain in the constant bisecting

angle plane for the entire angular displacements of one

revolution. Since the respective yokes rotate about the

cross-pin members to compensate for the misalignment, the

plane in which the cross-pin lies fluctuates between

positions normal to the driving and driven shaft two times

per shaft revolution. In figure 3-3, /? depicts the angular

range of positions for planes in which the cross-pin moves

throughout each revolution of the driving shaft (shaft 1).

Shaft 2, the driven shaft, is displaced from the horizontal

by angular displacement a . The relationship of the driving
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to driven shaft angular velocities was investigated by Ota

(1984a) and explained below. In figure 3-4 the vectors pC 40

and qC ©D are vectors from the cross pin center through the

individual drive shaft yoke sleeves. The vector pC 40

extends outward from the universal joint cross-pin through

the yoke sleeve of the driving shaft. The vector qC ©}

extends outward from the coupling cross-pin through the yoke

of the driven yoke. The coordinate system of figure 3-4

shows that the z axes coincides with the shaft axes, the x

axes are normal to the z axes but in the same plane. On the

other hand, the y axes are normal to the plane defined by

the x and z axes. The position vectors pC 40 and qC ©} are

represented by equations (1) and (2). It should be noted

here that the yokes of the driving and driven shafts are

displaced angularly by ninety degrees to properly mate with

the orthogonal cross-pin.

pC 40 = cosC oOcosC 40 i + sinC4Dj + s i nC oOcosC 43 k C 1 2)

qC©D = -sinC6)i + cosC©!)j C 2}

Due to the shaft misalignment, the plane of rotation of pC 4}

is not parallel to the plane of rotation of qC ©D . However,

if the misalignment angle was set to zero it is readily

apparent that the pC 42) . and qC©} rotation planes would be

parallel. Since pC 40 and qC ©D are vectors corresponding
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FIGURE 3-4
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to orthogonal cross pin members the scaler product of the

two vectors must be equal to zero as in equation (3).

pC40 • qC©3 = (3)

Inserting equations (1) and (2) into equation (3) yields the

following results:

-cosCoOcosCJOsinC©:) + cosC (£0 si nC 40 =

sinCe)/ccsC©) = si nC 40 '<. cosC *)cosC cO >

tanC©3 = tanC^/cosCa) C4D

Projecting the plane of rotation of the driven shaft yoke

onto the plane of rotation of the driving shaft yoke, the

following trigonometric relationships are derived.

;inC©:> = sinC*)/[l - sin^oiDcos^*)] 1 '

C53

cosC©) = cos(oi)cos(*)/tl - sin CoOcos C 40 ] C6D

Assuming that there is no friction between the cross pins

and the yokes of the driving and driven shafts, the

conservation of energy requires the moment that the drive

shaft yoke impinges on the coupling cross pin is the same as

the moment that the cross pin exerts on the driven shaft

yoke. As previously explained the cross pin plane of

rotation continuously alternates between positions

perpendicular to the driving and driven shaft centers of
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rotation two times per shaft revolution. The moment

transmitted by the coupling cross pin remains normal to the

plane of rotation of the cross pin. Therefore, as the cross

pin rotates the plane of rotation fluctuates as does the

normal to the rotating plane. The vector expressing the

transmitted moment can then be written as some scaler times

the cross product of the position vectors, pC 40 and qC ©}

.

as seen in equation (7).

M = MC pC 10 X qC ©} ] C73

As mentioned above this moment vector does not continuously

coincide with the axis of either the driving or driven shaft

but rather oscillates between positions coinciding with the

shaft axes two times per driving shaft revolution. Inserting

equations (1) and (2) into equation (7) and segregating the

vector elements yields:

M « M-k = MD
z

M = M -qC©D = O

M = M-qC© + n /2D = Msi nC oO cosC 40
T

C8D

C92>

C10D

where

D = CI - sin2CaDcos
2
C40D

1/Z

Similarly for the driving shaft moments the components are:

M = M-k = McosCoO/D CUD
Zl 1
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where k = kcosCcO
1

M = M~'pC^JD =

and

M = M'pC* + n/2D = -Msi nC cO si nC 40 /D.
R

CI 2D

CI 3}

Equations (8) through (10) represent the transmitted

moments. M x is the moment transmitted along the driven

shaft. Moment components Mo, HT , Mp, and M R which are

components corresponding to the cross pin to yoke

combinations give rise to the observed lateral vibrations of

a misaligned flexible coupling. For ex equal to zero, these

components are eliminated. To determine the non-constant

velocity of the output shaft in this coupling arrangement

the time derivative of the output shaft position ©' needs

to be resolved. Taking the time derivative of equation (3)

yields

:

Cpc*} • qce:o • = •cosCcO/d - ©*d. C14D

Substituting equations <8> and (11) into (14) yields:

cpc^o -qceo:) * = ci/mdc**m - ©*m 3.
zl Z

CI 5D

Since the coupling was assumed to be f r ictionless, the

time rate of work of the drive shaft CM *' D must equal the
Zi ^

time rate of work of the driven shaft CM ©*}
z

This gives
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rise to the following:

**M = ©'M . C16D
zi z

Solving for the drive shaft angular velocity yields:

©* = *'cosCoO/Cl - sin
2CoOcos 2

C*)). C17>

Where ©' is the angular velocity of the output shaft.

Therefore, equation 17 expresses the input-output angular

speed relationships for misaligned flexible couplings.

Universal joints can be constructed to allow variations in

angular misalignments of up to 45 degrees. Investigating

equation (17) in some detail will yield some interesting

results. For a = the driving and driven angular

velocities are equal and constant with respect to position.

Therefore, when there is no angular displacements the

coupling arrangement is said to be a constant velocity

coupling Ci.e. ©' = '!). The cases of constant velocity

couplings will be discussed in following sections.

When ex is fixed at some constant value it is readily

apparent that the driven angular velocity ( ©' ) is a

function of the driving angular displacement C * 3 . For

example if c* = 10 degrees and the driving velocity is 30
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cps equation (17) becomes:

©' = 29.54/C1 - .030cos 2
C*D^

Table 3-1 shows the various rotational speeds of the driven

shaft as a function of angular displacement of the driving

shaft. Using the reference for * in figure 3-3, it can

be seen that velocity is minimum when = rr/2 or 3rr/2 and

maximum when * = or n. Therefore, an angular velocity

maximum occurs each time a plane occupied by the cross pin

of the universal joint is perpendicular to the driving rotor

or when the cross pin plane is perpendicular to the driven

rotor. Minimum velocities occur when the connecting point

plane swept angle ( ft ) of figure 3-3 is bisected.

Consequently, for each driving shaft revolution there are

two minimum and two maximum angular speed variations.

These two times shaft rpm oscillations of the cross pin also

correspond to the forces and moments generated as the cross

pin moves alternately from positions perpendicular to the

driving shaft to positions perpendicular to the driven shaft

as shown in equations 8 through 13. Ota (1984a) in his

analysis of the single non-constant velocity coupling

decomposed the rotor force and moment fluctuations into

their respective x and -y components. These equations are

listed below:
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* (deq) (30cps) (cps a =
' 10 deq) (cps a r 30deq>

00 30 30.46 34.46
45 30 30 29.7
90 30 29.54 25.98
135 30 30 29.7
180 30 30.46 34.46
225 30 30 29.7
270 30 29.54 25.98
315 30 30 29.7
360 30 30.46 34.46

Driven shaft angular velocities as a function of driving shaft
angr.lar displacement and driven shaft nisal ignment

.

TABLE 3-1
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and

F = C-3/C4a}tanCoOsinC2utMCl + 2\/:
N/2 cosC NtoO D

CM - <5 X £
N/2

d sir»CNajt:0 ] C 1 8}
b tZ.N= 2 . 4 . <S. . . n

F = C3/C4aDsinCoODCl + cosC 2oot:> 3 [ C 1 +2^ N
£
2 cosCNwOD

CM - 6S £*"* d sinCNwOD] C19D
b tLN = 2,4 , <5. . . n

M = aF /3 C2CO
x Y

M = -aF /3 C213
Y x

d = C2NI -x6 /C 6 - I CNc/}} C22}
n p t p

* = tot. C23D

In equations 18 thru 21 Mt, denotes a constant resisting

moment acting on the driven shaft end (point B), " a "

represents the distance from the driving end moment (point

A) to the coupling centroid, <$ corresponds to the rotors

torsional spring constant and e is a coefficient

characteristic of the joint angle. The point being that

these equations readily show the force and moments

components to have even multiples of the driving frequency.

These in turn give rise to the even multiple lateral

vibrations observed when examining a skewed two rotor system

coupled by a single universal joint.

The above vibrational phenomenon is often used in

determining rotor axis alignment in rotating machinery. As
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can be seen by equations 18 thru 21, the fluctuations in the

transmitted forces and moments go to zero as the alignment

angle ot goes to zero. In addition, the vibrational

magnitude increases as o. increases. Use of these facts

allows one to determine if rotating systems are aligned and

also the degree of misalignment can be determined if any is

present

.
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3.3 CONSTANT VELOCITY COUPLINGS

A constant velocity coupling in contrast to the non-constant

velocity coupling discussed in the previous sections has a

driven shaft speed always equal to the driving speed. A

number of conditions are required to achieve this constant

velocity. These conditions or criteria can best be seen by

analyzing the simple shaft coupling arrangement of figure

3-5. In figure 3-5 each shaft has an arm bent at an angle ft

with the shaft centerlines displaced by an angle o< .

Depending on the actual coupling design, the flexible

coupling may be constant velocity for a particular angle,

range of angles or all angles. When shaft 1 in figure 3-5

is rotated the driving and driven shaft connecting point (A)

rotates in a plane described by the coupling orbit. In

figure 3-5 the shafts lie in a plane perpendicular to the

plane defined by the orbit of the shaft coupling. The line

of intersection of these two planes is represented by the

line (A-A' > of figure 3-5. Unlike the non-constant velocity

coupling connecting plane, this plane of contact between the

driving and driven shafts does not oscillate in the plane

defined by the shafts but rather remains fixed throughout

each shaft revolution. Although, the connection point "A"
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SIMPLIFIED CONSTANT
VELOCITY COUPLING

FIGURE 3-5
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moves axially along the shafts as the shafts rotate, the

perpendicular line segments from the shaft connecting point

(A) to shafts 1 and 2 remain equal in length. Therefore,

the radii from the rotating shafts to the rotating point "A"

is the same for both shafts. As the driving shaft rotates

through each revolution, the connecting point (A)

continually lies in the fixed plane defined by the coupling

orbits. In this constant plane of rotation, point A remains

at an equal radius of rotation (A-B) for both rotating

members. Therefore, since the line segment A-A' remains

fixed in space and the connecting point to shaft extension

radii are constant for both shafts, simple geometric

arguments show that the line segment A-A' bisects the obtuse

angle formed by the misaligned shafts. In addition, the

constant connecting point radii keep the angular velocities

constant and equal at all times.

The examination of figure 3-5 has illustrated the four

requirements necessary to have a constant velocity flexible

coupling

.

(1> The driving and driven shaft's plane of contact

must remain constant in space throughout each shaft

revolution. This is different from the plane of contact

of a single universal joint which cycles between

positions perpendicular to each shaft twice during each

revolution.
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(2) The plane of contact point rotation must remain

normal to the plane defined by the rotating shafts.

(3) This plane of contact must exactly bisect the

obtuse angle made by the offset shafts. < This

bisected angle will be one-half of the total shafts

obtuse offset angle.)

(4) While obvious for two shaft arrangements, for

three or more shaft configurations all shafts must lie

in the same plane.

A large number of constant velocity flexible couplings are

currently available in the market place. They include ball

couplings, tripot couplings, disk couplings and numerous

arrangements of multiply connected universal joint

couplings. Using the criteria laid out for a constant

velocity coupling, a double universal joint coupling will be

analyzed in the following paragraphs and a disk type

constant velocity coupling will be analyzed in a latter

chapter of this text.

Figure 3-6 depicts a three shaft - double universal joint

constant velocity coupling arrangement. The total joint

displacement angle is 2a . Shaft number 2 is the coupling

yoke whose mid-point (C) constantly remains in the shafts

plane of rotation. The first constant velocity coupling

criteria is thus satisfied in that for each revolution this
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Three shaft double universal Joint
constant velocity coupling

FIGURE 3-6
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point of contact remains constant in space. Also, the plane

o£ contact remains normal to the plane defined by the

rotating shafts, which satisfies the second criteria for

constant velocity couplings. It should also be understood

that to be a constant velocity coupling all three shafts

must lie in the same plane. Finally, geometric arguments

show that at the number two shaft midpoint the rotating

plane of contact bisects the angle formed by the offset

shafts meeting the third requirement for constant velocity

couplings. It should be emphasised that the symmetry shown

in figure 3-6 is essential for constant velocity operation.

Figure 3-7 shows some other configurations in which constant

velocity coupling can be achieved with double universal

joints. Again, keeping in mind that all shafts must lie In

the same plane. A more subtle requirement for the double

universal joint coupling to achieve constant velocity is the

couplings yoke-cross pin arrangement, which will be

discussed in the following section.

At this point it should be shown that in addition to an

intuitive argument a mathematical argument holds for the

constant velocity coupling. Recalling that the equation for

the non-constant velocity coupling is a function of the

shaft angular displacement, rotor position and driving shaft

angular velocity, equation 17 of section 3-1 is repeated.
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Constant velocity universal joint configurations

FIGURE 3-7
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0' = *'cosCcO/Cl - sin 2Ca)cos 2
C*)) C1D

Applying equation (1) to shafts 1 and 2 of figure 3-6, it is

apparent that shaft 2 does not rotate at constant velocity

but rather at a speed specified by the non-constant velocity

coupling equation. Also, for proper operation the yokes on

shaft number 2 must be angularly aligned as in figure 3-8

with their respective cross pin members parallel. The

velocity relationship for the shaft two and three

combination of figure 3-6 can then be developed. Invoking

the same procedures and assumptions outlined in section 3.2,

the time rate of work of the driven shaft (shaft #3) must

equal the time rate of work of the driving shaft (shaft #2)

.

In essence there are two non-constant velocity universal

joints joined by the common coupling shaft. The moment

(Mn) transmitted axially along the driving shaft must be

equal to the moment (M x ) transmitted along the coupling

shaft as shown in section 3.2 of this study. For the same

reasons, the moment (M xe > transmitted axially along the

driven shaft (shaft #3) must also be equal to the moment

(M») transmitted along the coupling shaft. Therefore, we

have:

M x = M x i (2)

The time rate of work for each shaft must also be equal
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Coupling shaft yoke arrangement

FIGURE 3-8
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(again assuming frictionless couplings) so that

*'M = y' M C^}

Where

M = McosCoi)/D ca")

and

M = McosCcO-'D C53
22

noting that

* = cot

and

D = CI - sin2CoOcos 2C«) 1/2
.

Inserting equations (4) and (5) into equation (3) then

yields the constant velocity relationship:

r > = *• C63

Consequently, it can be seen that the triple shaft double

universal joint velocity relationship is a substantial

improvement over the single universal joint design. Even

though the coupling yoke (shaft 2) does not rotate at

constant velocity, coupling shafts 1 and 3 do rotate at

55





equal constant velocities. As previously mentioned, the

vectors normal to the cross pins oscillate between positions

aligned with the center of rotations of the coupled shafts.

It is these non-linear oscillations which give rise to the

non-constant velocity phenomena as discussed in section 3.2

of this paper for single universal joint arrangements.

Vibrations normally resulting from the shafts misalignments

are eliminated in this double universal joint configuration.

Even though coupling shaft #2 is not rotating at constant

velocity and the rotational inertia of the shaft accelerate

and decelerate twice during each shaft revolution, the

acceleration components are out of phase with each other due

to the coupling yoke arrangements and the force and moment

generated vibrations have a cancelling effect. This

cancellation yields a flexible coupling arrangement with

constant velocity characteristics and without the two times

angular velocity vibrations. The limiting factor in these

joint designs is maintaining relatively small angles of

angular displacement. In situations where more than 8 or 10

degrees of in plane angular displacement is desired the use

of two or more of the double universal joint flexible

couplings is an alternative. This configuration is shown in

figure 3-9. However, in most applications where vibrational

energy is a factor the angular misalignment is small and a

single double universal joint flexible coupling is

sufficient

.
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FIGURE 3-9
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In summary the symmetry of shafts one and three of figure

3-5 is critical in achieving a constant velocity coupling.

Once the shafts are aligned such that the symmetry is lost

or the shafts are no longer in the same plane, the system is

degraded to a system of two single universal Joints. This

gives rise to a non-constant velocity coupling and their

components of vibrational energy at frequencies of multiples

of two times the operating angular velocity. So once again

the two times operating speed vibrations can be an indicator

of misalignment in the double universal joint flexible shaft

coupling arrangement.
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4.0 RUBBER COUPLINGS

Although metallic flexible couplings including a variety of

universal joint configurations are the most popular means of

compensating for angular misalignment, rubber couplings are

often used in applications where minimal shock loads,

torsional vibration and noise transmission are desired. Due

to the mechanical properties of rubber, these couplings are

usually limited to relatively low torque applications. The

applied torque of the driving shaft determines the size of

the rubber coupling which will withstand the load. As the

torque requirements increase the rubber coupling rapidly

becomes excessive in size. Rubber couplings can be grouped

into either constant or non-constant velocity flexible

couplings. However, the constant velocity coupling is very

limited in use due to very low torque applications. In

addition rubber coupling behavior is a strong function of

its Young's Modulus. This dependence on Young's Modulus is

further complicated for rubber couplings due to the Young's

Modulus dependence on rubber hardness, ambient temperature,

geometry of the coupling, load frequency and load amplitude.

Another disadvantage of the rubber coupling is its

susceptibility to fatigue when cyclically loaded in both

bending and torsion.
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4.1 NON-CONSTANT VELOCITY RUBBE R COUPLI NGS

Rubber couplings when configured for non-constant velocity

applications are similar to the previously described

universal joint. However, in this case the cross pin is

replaced by a rubber disk. Depending on the attachment

geometry of the driving and driven shaft to the rubber

coupling a non-constant velocity vibrational energy scheme

of two or three times operating angular frequency can be

observed for the unaligned shafts. If each shaft is

connected to the rubber disk at two points the previously

discussed two times operating speed vibrations will be

observed. However, if each shaft is connected to the rubber

disk by three connecting points vibrational energy will be

observed at three times the operating angular frequency.

Figure 4-1 shows a coupling arrangement very similar to the

universal joint. For each revolution of the driving shaft a

plane of rotation normal to the page and indicated by A-A'

moves to positions normal to shafts one and two twice during

each drive shaft revolution. As in the single universal

joint previously discussed, this gives rise to non-constant

velocity characteristics of the output shaft. This output

velocity fluctuates between minima and maxima two times

during each revolution of the driving shaft. In

configurations using three shaft to rubber disk connecting
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pins the same argument as above can be used to show that

these speed excursions now happen three times per each

revolution of the drive shaft.

Alternate cycling of the connecting disk between positions

normal to each shaft leads to rapid fatigue of the disk when

shaft angular displacements are large. For this reason the

angular misalignment of a rubber disk type couplings is

usually limited to small angles. In these cases the speed

variations and the forces and moments generated are small.

In addition the material characteristics of the rubber disk

aid in transmitted force and moment vibration absorption.

The bending and torsional movement of the disk absorb most

of the energy generated due to the shaft misalignment. In

addition noise transmission from the driving end rotor is

effectively isolated from the driven end due to poor

propagation properties of the rubber disk.
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4.2 CONSTANT VELOCITY RUBBER COUPLINGS

Rubber couplings can be configured in a constant velocity

mode. These flexible couplings allow a larger degree of

angular misalignment but are usually limited to very low

torque applications. Figure 4-2 shows a constant velocity

rubber coupling. For steady rotating loads the shaft can be

assumed to be torsionally rigid. In this case the driving

and driven shafts operate at the same constant speed. For

each rotation the rubber coupling alternately is loaded in

tension and compression once again giving rise to possible

rapid fatigue failure. For low torque and low rpm

applications this constant velocity flexible coupling can be

an effective means of transmitting torque through angularly

misaligned shafts.

63





"tension

rubber
coupling

compression

Constant velocity rubber coupling

FIGURE 4-2

64





5.0 SPLIN ES AND A XIAL MOT ION DEVICES

In previous sections flexible couplings were used to account

for angular and/or lateral misalignments when used in single

or multiply connected combinations. With the exception of

the rubber coupling which can withstand limited amounts of

axial strain, axial motion and axial misalignment; axial

motion could not be allowed. A spline is a flexible

coupling which can be used to account or compensate for

axial misalignment. As most of the previous flexible

couplings could not compensate for axial misalignment, the

spline cannot tolerate angular or lateral misalignment. The

function of the spline is to transmit torque while allowing

a degree of axial misalignment or motion. In some designs

the spline may be configured to transmit torque but be

permanently pinned so as not to allow axial motion. In this

application the spline is used as an assembly aid in joining

lengthy sections of drive shafts or rotors in interference

laden environments. In still other applications the spline

allows axial motion to exist during normal operating

conditions. In the latter case the spline, as an axial

motion compensating device, allows for length changes due to

characteristics of the driving or driven mechanisms or

vehicle motion geometries. Spline connecting geometries can
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be lumped into two basic varieties, involute or parallel. An

involute spline has teeth which have an involuted profile

similar to that shown in figure 5-1. This design has high

torque characteristics due to its strong tooth construction.

The sides of the teeth of an involute spline act as drivers

to transmit the torque (note the wide base of spline teeth).

The major diameters of the spline may or not make contact

depending on the spline-shaft fit characteristics while the

minor diameters should not be allowed to make contact.

Parallel sided splines are manufactured such that the

driving teeth are parallel. The parallel tooth constructed

spline does not exhibit as strong a torque characteristic as

the involute spline of the same size, but is much cheaper to

manufacture. An example of a parallel sided spline is shown

in figure 5-2.

The spline coupling operates such that when torque is

applied to the driving shaft it rotates into a position such

that the sides of the teeth for the involute spline and the

corners of the teeth on the parallel sided spline on the

driving shaft end connection make contact with the sides of

the teeth of the driven spline as shown in figures 5-1 and

5-3. In high torque applications this usually brings about

rapid wear due to fretting in vicinity of the tooth contact

points. In both of the above cases axial motion is

compensated for by axial sliding of the spline teeth in the
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Involute spline tooth design

FIGURE 5-1
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Parallel sided spline

FIGURE 5-2
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Parallel spline teeth contact

FIGURE 5-3
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axial direction. In normal conditions this axial motion is

smooth along the tooth contact. As the driving shaft

rotates with some inherent axial motion tooth contact is

maintained. The axial motion of the driving shaft is

compensated for by increasing or decreasing the length of

tooth contact within the spline. If properly designed and

assembled the spline minimum length of contact should be

greater than 0.8 times the spline diameter in order to

maintain torsional strength of the coupling. In addition, if

the spline surfaces are not properly lubricated the friction

force between the tooth contact will be greater than the

axial force and the spline will be essentially welded to the

shaft allowing axial vibrations to be transmitted through

the coupling. The fixed or pinned spline is generally used

in applications in which the spline is used to allow easy

assembly and disassembly, but when joined the spline is then

pinned to prevent axial motion. Once assembled these

splines no longer account for axial motion and will

dynamically have the properties of a single rotating disk on

a shaft.

To be properly operable the rotors joined by a spline must

be axially aligned. If not properly aligned the spline

coupling can exhibit either constant or non-constant

velocity and vibrational characteristics. For the case of

pure lateral misalignment as in figure 5-4 a non-constant
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velocity relationship will exist. This non-constant

velocity characteristic arises from the fact that the radius

of rotation of the driven shaft is not constant for all

angular positions around its circumference. This assumes

that there is sufficient play in the spline for lateral

motion. If both shafts were pinned rigidly to the coupling

the driven shaft would be forced to rotate in an orbit

defined by the larger radius of rotation. For the

non-constant velocity profile the maximum velocity occurs

when Ri is the radius of rotation and minimum velocity

occurs when R^ is the radius of rotation. In the case of

pure lateral misalignment the speed maximum and minimum

occur once per drive shaft revolution. For spline coupled

shafts exhibiting pure angular misalignment as in figure

5-5, a constant velocity characteristic results. Assuming

that the coupling is symmetrically fitted on the two shafts

the rules required for constant velocity operation of

section 3.3 of this paper can be applied. The shaft's plane

of contact (defined by a plane intersecting the coupling in

figure 5-5 and shown by line segment A-A') remains constant

in space. In addition the rotating plane of contact remains

normal to the plane defined by the shafts. Finally, in

figure 5-5 the obtuse angle formed by the two shafts is

bisected by the rotating plane of contact. The application

of the constant velocity coupling criteria therefore shows

that the spline with pure angular misalignment is a constant
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velocity coupling. In coupling combinations in which

symmetry is not present or when combinations of

misalignments occur the velocity profile will exhibit

non-constant velocity characteristics.
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5.1 DAM PING DUE TO SPLINE COUPLED SHAFTS

A more subtle but potentially more severe coupling situation

occurs when a spline coupled shaft is operated in the rotors

supercritical region. If not properly aligned and fitted

the spline coupling could introduce internal damping to the

rotating system. This internal damping is due to rubbing of

the coupling on the shafts as relative motion between the

shafts and coupling spline occurs while the shaft is

rotating. Consequently, any disturbance introduced into the

system which causes a bending action on the rotating element

or deflection of the rotor to an orbit different than the

normal spin about its axis will allow the damping mechanism

to generate a force. In the subcritical regime the force

generated by the internal damping mechanisms tends to

stabilize the system and return the system to stable spin

about its axis. A different situation arises when the

rotational velocity is above the rotors resonant frequency.

In this case the rotating angular velocity of the shaft is

greater than the natural frequency of the rotor (i.e.

supercritical). Introducing a shaft disturbance . again

causes a whirling action in which the shaft orbits in a path

different from the spin about its axis of rotation.

Depending on circumstances this whirl may be either in the

direction of the driving angular velocity (forward whirl) or
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in a direction opposite the driving angular velocity

(backward whirl). If the interactions of the shafts and

spline introduce an internal damping mechanism into the

rotating system during a condition of forward whirl,

instability could occur.

An explanation of the rotating shaft instability due to

internal damping can be accomplished by energy methods as

explained by Bucciarelli (1982). An energy transformation

from kinetic energy due to spinning about the shaft axis to

kinetic and potential energy due to the whirl orbit can be

accomplished by internal damping introduced by the

spline-shaft angular misalignment. The shafts and coupling

spline can be modeled as in figure 5-6 where the

spline-shaft rub has been modeled as a linear viscous

damping and the spline mass as two rotating disks on

separate shafts. In normal operation, the centers of mass

of the disk lie on the axis of rotation. However, when a

whirl state exists the shaft axis is displaced from the

normal axis of spin by an amount described by the angle < )

in figure 5-6. During this whirl orbit, relative motion

between the rotor shafts and coupling spline introduce the

damping modeled in figure 5-6.

Using Bucciarel 1
i

' s (1982) model shown in figure 5-6, the

internal damping mechanism, C x , is modeled as linear
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viscous damping distributed uniformly around the disks'

outer circumferences connecting the two disks. An external

damper, also distributed around the disks' circumferences,

connects each disk to ground and is shown as Ce in the

figure. This external damping acts to retard the motion of

the shaft when in a whirl orbit. In order to isolate the

potentially destabilizing elements of the shaft

configuration shown in figure 5-6, an analysis of the forces

and moments generated by the internal and external damping

mechanisms must be accomplished. In figure 5-6, the normal

spin axis of the rotating system is denoted by line segment

A-A'. The displacement of the shaft from its normal spin

axis is represented by the angle ( <p ) . The shafts' angular

velocity is represented by s and the whirl velocity by w.

The Xi axis lies along the shaft axis; and the Xe axis

originates at the center of the disk and extends radially

outward as shown. (The X t and Xs axes lie in the plane of

the paper.) The X3 axis originates at the disk center and

extends radially outward from the paper. This coordinate

system moves with the shaft as the shaft deflects away from

its normal spin axis when whirling.

As the shafts whirl while spinning, the internal damping

mechanisms generate forces which push and pull on the disk.

The incremental force Ci.e. force per unit radian) acting on

the outer edge of the disk is defined as positive when
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pushing outward on the disk and negative when pulling inward

on the disk. The magnitude of the force generated by the

internal damping mechanisms is a function of angular

placement around the outer circumference of the disk

(represented by the angle ( c* ) measured from the Xe axis)

and the shafts displacement from its normal spin axis

represented by the angle ( <p ) .

The magnitude of the incremental forces generated by the

internal damping mechanisms is dependent on the rate of

longitudinal separation of the disks which in turn is

dependent on the damping components angular location, (a ),

around the disks' outer circumferences. The longitudinal

displacement due to the combination of whirl and spin is

illustrated in figure 5-7. Figure 5-7(a> shows the end view

of the disk. The disk center travels in the whirl orbit

which has a radius Lsin( 4> > . Figure 5-7(b) shows the side

view of the same disks. Note that L.= is the separation

between the disks at their center for a fixed deflection

angle ( <£ > . Longitudinal separation at the top of the disk

is L >=) 2asin(# ) and at the bottom the separation is L

2asin( <P ) as shown in figure 5-7(b). As the shafts whirl and

rotate simultaneously, the point B on the outer

circumference of disk of figure 5-7(a) deflects into the

paper. The amount of deflection is function of angular

position around the disk circumference denoted by ( a )

.
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The longitudinal deflection can best be visualized by first

allowing the shaft to spin without whirling and then

examining the shaft whirling without spinning. The

longitudinal motion of the internal dampers due to spinning

can by seen by fixing ( <p > with a set of bearings located at

points J and J' of figure 5-6. With the shafts held in their

deflected positions (determined by ( <P > ) , the shaft is

allowed to spin. As the disk in figure 5-7 spins by an

amount sdt, point B of figure 5-7(b) travels along the

disk's circumference to point D. Therefore in the time

period dt, the longitudinal change in disk separation is:

L« = DF - BE,

as seen in figure 5-7(b). The longitudinal change in disk

separation due to spin only can be written as:

AL = L + 2acos(a + sdt)sin<<£) - (L + 2acas ( a) sin ( <p)so o

Zj_ = 2asin ( <p) Ccos(cx + sdt) - cosCoOD, (1)

where LQ 2acos( a )sin< <P ) is the longitudinal displacement

at point B. The sdt term represents the change in angular

position around the disks circumference during an increment

of time, dt. The longitudinal or axial velocity of the disk

due to the change in angular position, sdt, is :
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s 2asin(rf>)[cos(a + sdt) - cos(a)] „
At"

=
dt (2)

Invoking small angle approximations for sdt yields the

longitudinal velocity due to the angular spin velocity to

be:

V = -2asCsin (a) sin ( <p) 1. (3)
s ^

Equation (3) shows that as the disks spin, the disks' rate

of longitudinal separation is negative. This agrees with

figure 5-7(b) which shows the separation between the disks

decreases when the disk spins from point B to point D.

To determine the longitudinal velocity due to whirl, the

disks are not allowed to spin while the disks rotate about

the A-A' axis in the whirl orbit of figure 5-6. As the

point B of figures 5-7(a and b) rotates an amount wdt to

point B' , the change in longitudinal displacement of the

disks is:

6L ~ = HD - GB,

which can be written.

^-
w - L

q
+ 2acos(o)sin(0) - CL + 2acos(a + wd t ) s i n ( <p) 3
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AL = 2asin ( 0) [cos ( a) - cos (a + wdt)D (4)

This shows that as the shafts whirl about the A-A' axis by

an amount wdt, the longitudinal displacement is increasing.

Again invoking small changes in wdt yields:

**-„ ~ 2asin(a)sin(0){wdt} (5)

The longitudinal velocity due to whirl alone is then

V = 2awsin (a) sin ( 0) <6>

The longitudinal velocity along the disk's circumference due

to spin and whirl at a point defined by < ex ) , (noting that

< a ) is measured with respect to the X fe axis), is:

V = V + V = 2asin (oOsin i <p) Cw - sDw s ^
<7)

Now that the incremental forces, < f = C T V ), generated by

the internal damping can be determined, the moment generated

by the sum of the incremental forces can be written. The

moment generated by the internal damping mechanisms. Mi, is

2n
M_ = "C T V(a)asin(a)da

I oJ I
<8)
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In
Mj = 2asin(0)(w - s)Cj Jsin ( a) asin ( ex) dot <9)

Mj = 2na^C lS in(0)C w - 5]
<10)

where Ci is the damping per unit radian around the disks

circumference. Equation (10) shows Mi to be stabilizing so

long as w > s.

To complete the analysis, the effect of external damping

needs to be determined. Figure 5-8 shows an end view of the

disk with the external damping per unit radian, CE , attached

between the disks outer circumference and ground. The

whirl radius is shown as:

whirl radius = r = LsinC 0). (11)

The radial displacement of the dashpots as the disk travels

in the whirl orbit defined by equation (11) and shown in

figure 5-8 is:

6 = l_
E

- rcos(a) (12)

where LE is the distance between the disk and ground when no

whirl is present. In order to determine the radial

component of the velocity due to the whirl velocity at a
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point on the disk's circumference, the components of the

tangential whirl velocity need to be analyzed. Figure

5-8(b) shows the tangential velocity to be wLsinC <p ). The

radial component of that velocity is:

v*
w = rwsin(a) (13)

Thus the incremental force due to an individual damping

element is:

*
E = rwC

E5in(a)sin(a)da (14)

Summing these forces around the disk's circumference yields

2n
F
E = Lsin(^)wC

E ,J
sin (oOdoc

F
£

= rrLsin (<£>wC (15)

This force subsequently generates a moment about an axis

parallel to the Xe axis and passing through point A of

figure 5-6. This moment due to the external damping forces

is:

M
E

= LF
E

< 16>

M
E = nC

EL
2
wsin(0) <17)
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It should be noted that based on equation (17) ME is always

stabi 1 izing

.

Recalling that M r is stabilizing when w > s, and that Me is

always stabilizing, stability requirements for the rotating

system of figure 5-6 can be established. The system will

remain stable so long as the sum of the moments acting on

the rotating system are positive. Since Mi is a couple, the

moments can be summed about the X^^ axis of figure 5-6.

Therefore, the rotating system will be stable if:

Me * M, > 0. (18)

Substituting equations (10) and (17) into equation (18)

yields

:

2a C Cw - sJ + L H w >
(19)

Consequently, the system is stable if

2C ia
2
s < (2a

2
Cj + C

E
L
2
)w (20)

and the system is borderline stable if

s = C 1 + C
E
L
2
/2Cja2 Dw (21)
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In review, the internal damping components of figure 5-6

introduce forces into the rotating system which act on the

shaft and generate a moment. This internal damping moment

can be either stabilizing or destabilizing depending on the

magnitude and direction in which it acts, (Recalling that

the moment is stabilizing if: w > s.). On the other hand

external damping applied on the rotating system retards the

whirl orbit and is always stabilizing. Therefore, the

external damping which is modeled in figure 5-6 by CE is a

stabilizing mechanism and internal damping modeled as Ci

may be either stabilizing or destabilizing.

In backward whirl, the whirl orbit direction is in a

direction opposite the shaft rotational angular velocity

(i.e. w is negative). Therefore, the moment due to the

internal damping and the whirl orbit acts in the same

direction as the shaft's angular velocity and opposes the

direction of the whirl angular velocity. Therefore, in

backward whirl the internal damping will always have a

stabilizing influence on the rotating system. In forward

whirl, the moment due to the internal damping and the whirl

orbit acts in the same direction as the rotating angular

velocity and the whirl orbit (w and s are now both

positive.). Therefore, rotating shafts operating with

forward whirl may become unstable unless the criteria of

equation (19) is met.
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In summary, rotation in the subcritical angular velocity

region and supercritical operation with backward whirl are

conditions of stability. Shafts operating in the

supercritical regime with forward whirl will be stable so

long as:

s < C 1 + C
E
L
2
/2C a

2
]w (22)

In all practical cases, the spline coupling must be

angularly aligned such that the axial travel is limited to

the design parameters of the coupling, lateral motion

restricted and fitting parameters well suited for the

particular application. Applications of the axial spline

coupling devices are often in tandem with couplings designed

to allow angular misalignment. For these compound

couplings, shaft systems can be arranged to provide for

angular, lateral and axial misalignments in either

non-constant or constant velocity applications.
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6.0 SHAFTS AND ROTORS

The preceding sections ail assumed that system components

were properly designed and installed to withstand the

applied operating frequencies and load torques. There are

several criteria in shaft construction and equipment

arrangements which must be considered in order to prevent

vibrational problems. The shaft construction and support

arrangements must be adequate to support the work loads

demanded. In addition, alignment criteria must be

established and implemented on the rotating system which

will take into account movement of the equipment foundations

due to movement of the mounts and platforms, shock, and

thermal expansion and contraction. In order to have a

system of rotating elements operating properly and to

achieve the equipment life expectancies, the system elements

must be properly designed, the coupling devices properly

selected and correct alignment criteria established and

implemented. Rotating element design is a complicated issue

which is a function of material properties, mounting

configurations, application, applied torque, angular

velocity and equipment size. In the following section a

brief discussion is presented for two simply supported shaft

designs. Equations similar to those presented are cataloged

in various texts but each equation used must be tailored to

the particular application.
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Coupling devices have been devised for numerous

applications. The coupling industry has thrived over the

years with the number of coupling designs and sizes

currently on the market ranging in the thousands. So rather

than the design of a coupling being an issue, selection of

the coupling from those available must accomplished. In

chapter seven of this text, issues concerning coupling

selection are discussed in detail. The discussion includes

considerations which must be considered in general; and an

analysis of a particular coupling is presented.

With shaft construction and coupling selection becoming an

exact science, much remains to be determined concerning

equipment alignment. The correct alignment procedures,

alignment tools and allowable alignment tolerances are

currently not agreed upon by most experts. In fact

alignment techniques are often viewed as an art with the

amount of misalignment tolerable left to the judgement of

the mechanic or technician. In section 6.2 of this study a

discussion is presented on two alignment techniques. Dial

indicator methods which have been around since the turn of

the century are briefly discussed and a "state of the art"

laser-optical system operation is outlined. Finally, the

issue of how much misalignment is tolerable in particular

applications is discussed.
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6.1 SHAFT CONSTRUCTION

For sections of circular shafts the design of the rotor must

be sufficient to withstand the maximum applied torsional

shear stress while minimizing the shaft angular twist per

unit length. These values for circular shafts can be

determined from equations (1) and (2) of this section.

Maximum torsional shear stress at the outer fiber:

S = leTdo/CCrOCdo* - di *} 3 C1D

Twist angle in radians/unit length:

e = 32T/[CrOCdo
4

- di*D3 C 2D

G = Torsional modulus of rigidity (psi)

T = applied torque (lb-in)

do = outer shaft diameter (in)

di = inner shaft diameter (in)

Torsional stiffness is important for a variety of reasons. A

typical shaft can often be considered as a mechanism for

connecting relatively large rotating inertias. This system

can be subjected to a variety of vibratory excitations

either forced or free in nature. Consequently, the drive
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shaft or coupling shaft should be properly designed to

retard shaft torsional vibrations. For instance the system

resonant frequency can be altered by designing rotating

element wall thicknesses to yield a desired torsional

stiffness. Other parameters which may be varied to achieve

desired system characteristics are shaft length, shaft

diameter and rotating element material properties.

Another parameter which must be considered when designing

coupling devices is the maximum rotating speed. This is

particularly true for the double universal joint constant

velocity coupling which makes use of several shaft sections.

Whenever the shaft angular velocity approaches the shaft

critical speed, vibratory oscillations can occur due to

shaft whirling. The Critical speed of a rotating shaft is

the same as the resonant frequency of the shaft in bending.

Equations (3) and (4) define the critical speeds for simply

supported solid and hollow rotating steel shafts with

modulus of elasticity (E = 29X10e > and density ( P = .281

lb/in ;2 ). These shaft configurations are shown in figures

6.1a through 6.1c.

Solid round shaft:

He = 4705000d/Le . (3)
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Slnply supported shaft

(a)

solid shaft hollow shaft

Cb> <c)

SHAFT GEDMETRIES

FIGURE 6-1
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Hollow round shaft:

Nc = 4705000<do- - dia )
1 "B/L ,E (4)

where: d = shaft diameter

di = inner shaft diameter

do = outer shaft diameter

L = shaft length

The coefficients of equations (3) and (4) are dependent on

the end support conditions. Coefficients for a variety of

shaft configurations and end support conditions have been

catalogued in several texts (Den Hartog, 1956 and Harris

1961). Shaft systems quite routinely operate in frequency

regimes above the critical speeds. However, operation near

the critical angular velocities can yield vibrations

corresponding to frequencies of the whirl velocities. In

the case of forward whirl the whirl orbit is in the same

direction as the rotating angular velocity; while backward

whirl is in a direction opposite the applied angular

velocity. These whirling cycles induce fatigue cycles which

are substantially different. Figure 6-2 depicts a shaft

whirl orbit with its accompanying stress cycle. As the

shaft rotates counter-clockwise the whirl orbit is also

counter-clockwise. Tracking the shaft whirl orbit through

one cycle shows that the observed point goes through two

stress maxima.

The frequency of the stress maxima in the forward whirl
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state is the difference between the whirl velocity (w) and

the shafts spin velocity (s) about its axis.

£V < a - w ) <5>

When the whirl velocity is the same as the spin velocity,

called synchronous whirl, there is no fatigue cycle and

fpr = 0. As the whirl velocity deviates from the spin

velocity in either the supersynchronous or subsynchronous

direction, the fatigue frequency increases.

In backward whirl (shown if figure 6-3) the whirl velocity

is in a direction opposite the spin velocity. The fatigue

frequency of backward whirl is:

f B = s w

.

(6)

For a given whirl orbit the stress maxima are equal for both

forward and backward whirl, but the occurrence of the stress

maxima are much more frequent in the backward whirl case.

Thus for fatigue loading the backward whirl case is much

more severe given equal whirl orbits. Therefore, shaft

specifications must be designed to prevent shaft whirl in

order to prevent unwanted vibrations and to eliminate damage

due to fatigue caused by bending action during the whirling

cycles

.
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6.2 EQUIPMENT ALIGNMENT

Previous sections of this paper discussed the use of

flexible couplings to compensate for misalignments between

driving and driven pieces of rotating equipments. Although

couplings can compensate for misaligned pieces of equipment,

the need for accurate machinery rotating shaft alignments

cannot be over emphasized. It is important to ensure proper

machinery alignments allowing high cost capital equipments

to last years instead of only months. In every industry

there is a need to ensure proper machinery alignment since

misalignment can cause damage amounting to many millions of

dollars. Damage to equipments due to shaft misalignment is

in the form of bearing failure due to excessive rub as well

as destructive vibrations.

Misalignments of rotating machinery drive and driven

elements occur as angular, lateral or as combinations of the

two. Figure 6-4 depicts the various misalignment

configurations. In parallel misalignment the two shafts

are parallel but are not coaxially aligned (see figure

6-4(a>). Angular misalignments occur when the ends of the

shafts to be coupled are laterally aligned but the shafts

are not parallel. A configuration in which the driven shaft

is angularly misaligned to the driving shaft is shown in

figure 6-4(b>. To further visualize angular misalignment.
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if the shafts can be brought into alignment by moving one

end of either or both shafts to correct the misalignment

condition, the shafts can be said to exhibit purely angular

misalignment. In figure 6-4(b) the shafts can be brought

into alignment by raising the right hand end of the driven

shaft. The amount or magnitude of misalignment present or

tolerable in a coupled rotating system is usually specified

as offset or total indicator runout (TIR) . Offset is defined

as the amount one shaft is physically displaced from its

"truely" aligned position when measured from the other

shaft. Total indicator runout is the difference in dial

indicator readings taken in a particular plane when the dial

indicator attached to one shaft is rotated 180 degrees. The

relationship between offset and TIR can be expressed as

offset = TIR/2. Methods for determining TIR and offset will

be addressed in the following paragraphs. However, it

should be noted that measured offset alone does not

determine the type (i. e. angular, lateral or combinations

of the two) of misalignment present. To clarify alignment

criteria, alignment tolerances should be specified in

amounts of angular and lateral misalignment allowable. In

addition, the total amount of offset should be specified

when combinations of lateral and angular misalignment are

present

.
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Currently, the most common means of determining shaft

element misalignments are dial indicator techniques and

laser-optical alignment methods. Determining the amount of

misalignment is usually done with dial indicator gages in

configurations similar to those of figure 6-5. Indicator

readings are taken in the following manner. With the dial

indicators connected as shown the gages are initialized by

adjusting the readings to zero at the respective shaft's

twelve o'clock positions. Holding shaft B fixed, shaft A

and its attached dial indicator is rotated slowly about its

axis stopping at ninety degree intervals to record the

indicator reading. (Readings should be recorded at the 3,

6, 9 and 12 o'clock positions for reasons to be discussed in

following paragraphs.) The dial indicator should then be

stopped at the 12 o'clock position to ensure the reading is

still zero. It is a good idea to repeat the readings for

verification. Then hold shaft A fixed and rotate shaft B

and record the readings of indicator B in a similar manner.

The recorded readings should look similar to figure 6-6.

Adjustments to the rotating equipment foundations can only

be accomplished by moves in either the horizontal, vertical

or axial directions. This is why readings were recorded at

only the 3, 6, 9 and 12 o'clock positions. When aligned the

readings of gages A and B of figure 6-5 should be equal to

zero throughout each shaft revolution. Again noting that the

TIR is the gross difference in readings taken with dial
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indicators at the three and nine o'clock positions or twelve

and six o'clock positions. Again, the amount of offset is

TIR/2. It should also be clear that misalignment in the

vertical plane will be indicated by the offset determined

from the dial indicator readings taken in the twelve and six

o'clock positions. Conversely, horizontal plane misalignment

will be indicated by dial indicator readings taken in the

three and nine o'clock positions. Misalignments are

generally a combination of vertical and horizontal plane

misalignments. However, for simplicity of explanation, the

following paragraphs will assume the misalignment to occur

in a single plane.

In general, misalignment conditions are usually combinations

of parallel and angular misalignments. However, the cases

of purely angular or purely parallel misalignments can be

detected by dial indicator techniques. To determine if a

misalignment is purely angular, determine the offset with

the dial indicators in the horizontal or vertical planes as

outlined above ensuring that the distances from the end of

the shaft to the point where the dial indicator apparatus is

fastened to the shafts are the same for each shaft. If the

misalignment is purely angular the readings taken from the

driver to driven shafts will correspond exactly to those

readings taken from the driven to driving shafts for a

particular plane. The angular offset component in the
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horizontal or vertical planea ia then determined by equation

(1) .

Tan( e ) = (indicator offset)/(L> (1)

where L ia the diatance between driving and driven ahaft

indicator connecting and meaauring pointa. Thia diatance

ahould be the sane for each dial indicator arrangement. The

angle ( 0) ia the angle of miaal ignment

.

To determine if a misalignment condition ia a purely

parallel miaal ignment , determine the offaet with the dial

indicatora in either the horizontal or vertical planea by

the aame techniques expreaaed in the previous paragrapha. If

the miaalignment is purely parallel, the dial indicator

readinga taken from dial indicatora A and B of figure 6-5

will be equal in magnitude but oppoaite in sign for a

particular plane (either horizontal or vertical). The

amount of miaalignment is then expressed as:

offset = TIR/2 (2)

As noted above, miaal ignmenta generally occur aa

combinations of angular and parallel miaalignmenta . In the

cases of combined misalignment the dial indicator readinga
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taken from dial indicators A and B of figure 6-5 by the

methods described above will differ in magnitude and sign.

Using dial indicators to measure the misalignment offset

when combinations of parallel and angular misalignment is

present, will yield only the total offset. The amount of

parallel or the degree of angular misalignment cannot be

singularly isolated. For cases of combined misalignment,

the misalignment is usually expressed simply as the TIR. In

these cases the largest TIR from the two sets of readings

(dial indicators A and B of figure 6-5) is regarded as the

correct TIR. Consequently, to clearly express the allowable

or existing coupling misalignment criteria, the alignment

tolerances should be expressed in terms of amounts of

angular misalignment ( in degrees or radians), parallel

misalignment (in mils or inches) and TIR (in mils or

inches)

.

Currently, graphic methods for recording the indicator

run-outs and determining the moves necessary to correct the

misalignment are the most popular means of determining the

alignment corrections. However, mathematical solutions

exist which can be incorporated into hand held calculators

and personal computers (Piotrowski, 1986).

The mathematical solution is obtained by making use of the

fact that the shaft axes of the two rotating pieces of
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equipment can be represented by straight lines corresponding

to the axes center of rotation. Use of similar scalene

triangles is then used to resolve the equipment moves. In

figure 6-7 ht is the distance between points where the dial

indicator is attached on one shaft and where it touches the

other shaft. HT is the distance from where the indicator

bracket is attached to the location of the inboard feet and

HHT the distance to the outboard feet. The value bs is the

shaft diameter on which the readings are taken. The BS and

BBS terms are the magnitudes of the required moves of the

inboard and outboard feet respectively. Similar triangle

relationships can be obtained for each of the two pieces of

equipment to be aligned. Consequently, correcting moves can

be algebraically determined. The similar triangle

relationships are then given by equation (3).

ht/bs = HT/BS = HHT/BBS (3)

For the driven and driving elements shown in figure 6-7

required moves to bring the system into alignment in single

plane can be calculated. Correcting moves for the driven

and driving feet are calculated as follows.

Driver inboard feet:

IBdr = BC X Y ] /C - Y (4)
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Driver outboard feet:

0B„ R = AC X Y ]/C - Y (5)

Driven inboard feet:

IBdn = DC X Y ] /C - X (6)

Driven outboard feet:

OBom = EC X Y 3 /C - X (7)

where:

X = one half the dial indicator readings taken with

the dial indicator attached to the driven shaft

and readings taken on the driving shaft.

Y = one half the dial indicator readings taken with

the dial indicator attached to the driving shaft

and readings taken on the driven shaft.

The other dimensions are shown on figure 6-7.

To complete the machinery alignment these calculations must

be accomplished for moves in the vertical plane and again

for the horizontal plane. Therefore, to accomplish alignment

in one move of the equipment feet eight calculations must be

performed. For horizontal moves, the indicator run-outs

recorded in the three and nine o'clock positions are used.

The vertical moves are determined using readings recorded in

the twelve and six o'clock positions. In both cases

positive values indicate that the equipment feet need to be

raised or moved left. Negative values indicate the

equipment feet must be moved right or down.
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Although currently not aa commonplace aa dial indicator

methods, the use o±" lasera to optically align shafts is

becoming more popular. With the cost, size and ruggedness

of these systems improving the laser system is becoming a

more viable alignment tool for the twentieth century

mechanic and technician. A laser-optical alignment system

consists of a laser /detector unit and reflecting prism

attached to the driving and driven shafts, a keyboard for

data entry, micro processor with a display unit and

connecting cables. In simple terms, the operation of the

laser alignment system is as follows. The laser /detector

unit is mounted on either the driving or driven shaft and

trained toward the reflecting prism which is mounted on the

other shaft. The prism reflects the laser beam back to the

detector. In an initial position the reflected laser beam

is zeroed onto the detector to establish a reference. The

shaft is then rotated. As the reflected beam moves relative

to the zeroed position during the rotation; the detector,

micro processor and diaplay units measure, calculate and

display the amount the reflected beam deviates from the

zeroed position. This operating principle can be seen in

figure 6-8 (Piotrowski, 1986). By utilizing the keyboard,

the correct geometric numerics for the equipment

installation can be entered into the micro processor. Using

entered data for the machinery installation and the measured

deviations of the reflected beam, the alignment condition is
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visualized on the display unit together with the necessary

moves to bring the system into alignment.

The advantages of the laser optical system over dial

indicator methods are many. Set up time is much faster; in

fact Bloch (1987) reported that in a Canadian power

generation plant, alignments which normally took eleven days

with dial indicator methods took only five days with laser

alignment techniques. Laser optical readings can be taken

with the coupling in place or removed. This allows a check

to be done with out a need to uncouple the rotating devices.

Distance between driving and driven pieces of equipment is

no longer critical. The accuracy and repeatability of

measurements are vastly improved. Lastly, visual

representation of the misaligned condition and required

moves are automatically calculated and displayed.

Disadvantages of the laser optical systems are cost of

equipment and relative fragileness of the components.

In preceding sections of this report the results of

equipment misalignments have been discussed. The issue of

how much a system can deviate from the "perfectly" aligned

position has not been generally agreed upon by machinery

manufacturers. Figure 6-9 shows a variety of guide lines

established by several organizations and individuals. In

general it is agreed that alignment tolerances are angular
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velocity dependent. This stems from two criteria. When a

misalignment causes system unbalance, the vibrational

amplitude increases in proportion to the rotational

frequency squared. Secondly, for gear couplings to maintain

proper lubrication the sliding velocity of the engaged teeth

should not exceed 120 inches per minute (Bloch, 1987).

Equation (8) approximates this velocity.

V = DN(tan( e > , (8)

where D equals the gear pitch diameter, N is the shaft

angular velocity in revolutions per minute and 2Ctan( 3>] is

the total indicator run-out divided by the coupling hub

separation ( L >. An expression for the amount of allowable

offset would then be:

TIR/L = V/CDN). (9)

Equation (9) shows the allowable TIR to be a function of one

over the angular velocity. This relationship is shown on

figure 6-9. A second curve on figure 6-9 shows a

recommendation of a US coupling manufacturer for gear

couplings (Bloch, 1987). This curve utilizes equation (10)

to determine allowable offsets.

TIR = [ L/P 13M. (10)
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In equation ten (L) ia the length between coupling gear

teeth centers, P is the gear tooth pitch diameter and M is a

velocity dependent coefficient. The third set of tolerance

criteria shown in figure 6-9 were published by Piotrowski;

(1986). In this figure Piotrowski's allowable offset per

inch of shaft separation was converted to a measure of TIR

for L equal to 24 inches and P equal to eight inches. The

figure also shows a relative measure of alignment tolerance

merit. Depending on the type of coupling, the velocity of

the drive and the application, operation in any of the

ranges may be "acceptable". For diaphragm couplings very

little misalignment is allowable due to fatigue

considerations, so operation in the "good" region is

desirable. For universal joints and gear couplings

operation in the acceptable region of figure 6-9 may be

adequate. In general the velocity dependence tends to be

derived from the gear coupling requirements. However for

other types of couplings, bearing rub, fatigue failure and

unbalanced vibrational amplitude are also velocity dependent

and must be considered. For constant velocity couplings

which do not exhibit vibrational misbehavior or unbalance

due to misalignment, the coupling alignment criteria is not

velocity dependent. In the case of constant velocity

couplings the allowable total indicator run-out is governed

by the mechanical limitations of the particular coupling

geometry. The discussion in section 3.3 of this study
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outlines the configurations in which constant velocity

couplings can be used to compensate for considerable amounts

of angular and/or lateral misalignment. For these

applications the degree of allowable misalignment is not

angular velocity dependent but rather dependent on the

mechanical construction of the flexible couplings. Criteria

for these couplings would plot as horizontal lines on figure

6-9 corresponding to the TIR of the particular coupling

specification

.

In conclusion, allowable alignment tolerances depend on the

type of coupling and the application. No general agreement

has been reached on how much misalignment is acceptable.

However, there is agreement that the amount of allowable

misalignment decreases inversely to the driving angular

velocity

.
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7. COUPLI NGS

To ensure that the rotor of a piece of rotating machinery is

sufficiently designed to withstand the stresses and strains

of the operating environment, the coupling chosen to join

the driving and driven mechanisms must be properly selected.

In addition to transmitting torque from the driving to the

driven pieces of machinery, the coupling must also

compensate for intentional and/or unintentional

misalignments and allow for possible axial motion of the

rotating devices. Rotating drivers involve equipments with

horsepower ratings of less then a single horsepower to

turbines rated at 60,000 horsepower or more rotating at

angular velocities of a few revolutions per minute to

100,000 revolutions per minute (Piotrowski, 1986). The

proper choice of couplings used to connect these drivers to

their corresponding components is a critical issue. Proper

selection depends upon the characteristics of the driving

and driven work-pieces, the operating environment and

operating life expectancies of the machinery. The coupling

must be capable of operating at the maximum designed

horsepower and speeds of the machinery. In most cases the

coupling is not chosen to be the weak link in that failure

of the coupling in some instances would cause severe damage
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to either the driving or driven or both pieces of machinery.

The misalignment capacity of the coupling must be sufficient

to account for installation offsets, misalignment due to

thermal expansion or contractions and dynamic misalignments

encountered when equipments are located on moving platforms.

Often the coupling must be able to absorb large axial thrust

due to loading or unloading of the driven equipments as in

propulsion turbines and engines. The torsional stiffness of

the coupling must be compatible with both the driving and

driven components. In some installations a coupling that

will dampen large torsional fluctuations may be desirable

while in other instances the coupling application will call

for torsional rigidity. The coupling's expected service

operating temperature range must be known. This aides in

proper material selections. Material characteristics are

often temperature dependent in that in cold temperature the

coupling components may become brittle while at high

temperatures a loss of strength may be observed. Lastly,

the driving and driven shafts mechanical connecting

geometries and material characteristics must be known. The

connecting mechanism on the coupling must mate in size and

geometry to the shafts. In addition, the thermal

characteristics of the connecting shafts must be specified

so that expansion or contraction of the shafts and coupling

will not weaken the mechanical joint. As alluded to in

previous sections of this paper there is a large variety of
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coupling types. Six major categories of couplings will be

briefly outlined below. The rigid couplings discussed in

section 3.1 consist of a variety of devices which directly

fasten the driving to the driven equipments with no capacity

for compensating for axial, lateral or angular

misalignments. Gear couplings are used to Join pieces of

equipment primarily when speed increases or decreases are

desired. These couplings involve mating of the machinery

components through various teeth or chain-teeth contacts

with speed variations accomplished by the driving to driven

gear diameter ratios. Slight misalignments are accounted

for in either loose fitting or sliding of mating parts. Grid

couplings are couplings in which hubs are placed on the

connecting ends of the rotating elements. These hubs must

be the same diameter and slotted such that slots of the

driver mate exactly with the slots of the driven hub (see

figure 7-1). A metallic grid is then placed in the slots in

an inter-woven fashion. These couplings can accommodate

axial, angular and lateral misalignments due to the

flexibility of the grid. In addition, this coupling allows

for torsional flexibility when changing loads, shock or

vibrations are imposed on the system. Grid couplings yield

vibration data corresponding to even multiples of the drive

shaft angular velocity when misaligned. These vibrational

characteristics are due to the flexing of the metalic grid

two times per drive shaft revolution when misaligned
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(Piotrowski, 1986). The fourth and fifth major categories of

couplings are the universal or Cardan joints and rubber

couplings which have been discussed in sections 3.2, 3.3 and

4.0 of this paper. The final category of couplings are disk

couplings. These couplings consist of multiple flexible

disks which are alternately fastened to each other and the

driving and driven shafts (see figure 7-2). These couplings

can accommodate varying degrees of axial, angular and

lateral misalignments as well as torsional load variations.

As can be seen, the selection of the proper coupling for a

given application can be quite complex. The selection

process is further complicated in that the various coupling

manufactures do not always provide the design criteria

sought when incorporating the coupling into the design.

Certainly, there is a minimum set of requirements needed to

ensure at least a minimal degree of success when selecting a

coupling. The four basic requirements are the maximum

horsepower rating, highest operating angular velocity,

allowable alignment tolerances and the mechanical coupling

size and geometry needed to fasten the coupling to the

shafts. In addition input versus output speed variations

would be useful, especially in applications where constant

angular velocity outputs are desired.
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7 .1 Disk Coupling Analysis

To illustrate the complexities of coupling selection an "off

the shelf coupling" will be analyzed. The discussion will

include angular velocity, horsepower ratings, alignment

criteria, coupling size and geometries, dynamic

characteristics and possible failure modes. The coupling

selected for this study is a flexible disk coupling

manufactured by Renbrandt, Inc. of Boston Massachusetts. The

specifications supplied with the coupling are shown in table

7-1.

The first item of business is to determine which column of

the specifications apply to the particular coupling.

Physical measuring of the device determines that the overall

diameter is 1.5 inches indicating column three is applicable

to this particular coupling. See figure 7-2 for a sketch of

this coupling. The torque rating is 250 in.-oz. and maximum

RPM is 5000 which indicates that the maximum torque and

angular velocity to be delivered by the driver must be less

than these values. The alignment criteria for this coupling

is specified in both angular, parallel and total allowable

misalignment. The degree of existing misalignment can be

determined by methods described in section 6.2 of this

study

.
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Renhrandt Flex-aite couplings are not designed for applications in
excess of the following ratings:
SERIES 1 2 3

Overall diameter .75 in. 1.0 in. 1.5 in.
Bore sizes (inches) 1/16 - 1/4 1/16 - 3/8 1/16 - 5/8
Static torque rating 38 in-oz 60 in-oz 250 in-oz
Max. angular misalignment 3 deg. 3 deg

.

3 deg.
Max. parallel aisalignaent .010 (in) .015 (in) .018 (in)
Total indicator aiaalignaent .020 T.I.R. .030 T.I.R. .035 T.I.R,

< inches)
RPM 5000 5000 5000

Renbrandt flexible coupling No. B55C55c specification sheet

Table 7-1
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The flexibility of a disk type flexible coupling is

accomplished by the thin flexible wafers shown in figure

7-2. The coupling bore assemblies and center disk are rigid

and are not designed to flex during rotation of the

coupling. When the disk coupling is used to connect two

pieces of equipment that are misaligned the flexible wafers

continually bend as the coupled shafts rotate. Consequently,

both angular and parallel misalignments are compensated for

by bending action of the dual flexible wafers. This bending

action gives rise to fatigue during operation in misaligned

configurations which is the primary cause of failure for

metallic disk couplings. Obviously, the greater the degree

of misalignment the shorter the coupling life with other

parameters held constant. To analyze the output angular

velocity characteristics, the basic requirements for a

constant velocity couplings should be re-stated.

(1) The driving and driven shafts plane of contact must

be constant in space throughout each revolution.

(2) The plane of contact point rotation must remain

normal to the plane defined by the rotating shafts.

(3) This plane of contact must exactly bisect the angle

made by the offset shafts.

(4) The shafts must lie in the same plane.

For the disk coupling depicted in figure 7-2 the driving and
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driven plane of contact is defined by the center disk. As

the shafts rotate in a misaligned condition the flexible

disks deflect equally allowing the center disk plane of

rotation to remain fixed throughout each shaft revolution.

This center disk also remains normal to the plane defined by

the driving and driven shafts. The flexible disk coupling is

analogous to a double universal joint coupling. Each of the

two flexible disks correspond to the universal joints and

the center rigid disk corresponds to the coupling shaft. Due

to action and reaction forces imposed on the flexible disks

by the misaligned shafts, the rigid center disk will be

pushed and pulled into a position of equilibrium such that

the obtuse angle formed by the two shafts will be exactly

bisected. Thus the conditions required for constant velocity

couplings are achieved. A critical issue for this type of

coupling is the material of the flexible disks. These disks

must resist surface fatigue while maintaining constant

flexibility parameters throughout its life. In addition the

disks must exhibit identical properties. If the elasticity

of the flexible disks are different the equilibrium position

of the center disk will not bisect the obtuse angle formed

by the shafts and constant velocity characteristics will be

lost

.
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7.2 Diak Coupling Fa ilure Analyaia

To aseess the fatigue resistance of the coupling, a dynamic

analyaia of the coupling's flexible disks must be performed.

For this analyaia take the caae of the maximum angular

misalignment (i.e. 3 degrees) at the maximum angular

velocity (5000 rpm) . This alignment scheme can be seen in

figure 7-3. As the coupling rotates, the point where the

coupling bore assemblies attach to the flexible disks will

be alternately displaced by one-half the total angular

misalignment. In addition, an out of plane twist will be

imposed on the wafer equal to one-half the angular

miaal ignment . These cyclic displacements could give rise to

fatigue failure if the stress placed on the coupling

flexible disks is greater than the flexible disks "endurance

limit". The endurance limit of a material is defined as the

stress in which regardless of the number of loading cycles

fatigue failure does not occur. The endurance limit for

steels in bending is generally twice the endurance limit of

the same specimen in torsion. Therefore, a good design

criteria for the endurance limit of a material undergoing

both bending and torsion (i.e. combined stresses) is

approximately fifty percent of the endurance limit for

bending stresses (Timoshenko, 1930).
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It should be noted that endurance limits of materials are

determined experimentally. Endurance limits are functions

of the types of applied stresses, the directionality of the

applied stresses, the material properties, and sample

geometries. While the endurance limit of all materials

cannot be expressed in terms of the material properties, for

steels sufficient data exists to support a correlation for

the endurance limit in bending to be approximately equal to

fifty percent of the ultimate tensile strength of the

mater ial

.

In selecting a coupling, the fatigue life of the coupling

should ideally exceed the life of the equipment or at least

exceed the time between planned overhauls. To determine if

the coupling's flexible wafers are susceptible to fatigue

the magnitude of the combined applied stresses need to be

determined. The compounding effects of the combined action

of bending and twisting is represented by equation (3)

(Timoshenko, 1930)

.

c x t
LJJ

In equation (3) t is the cumulative stress on the flexible

disk due to both bending and twisting at any point on the

disk. The stress due to bending is o and the stress due

to twisting is t .
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When the coupling is angularly misaligned as in figure 7-4,

the deflection of the flexible wafer can be represented by

equation (4)

.

d = RsinC a /2) (4)

Consequently, for a misalignment angle of three degrees the

total out of plane deflection is .014 inches, and the

maximum angular twist placed on the cross section is 1.5

degrees.

In his analysis of "Bending of a Curved Bar Out of its Plane

of Initial Curvature", Timoshenko (1930) utilized

Castigliano's theorems and the principle of least work to

determine the deflection of a curved beam due to combined

bending and twisting. For an imposed force (P) and moment

(K, t ); the potential energy for these combined actions for

the curved beam of figure 7-5 can be written as:

V = f* [CM /C2EI DD
2

+ CM /C2EI i)}
2

+ CM /C20 :>

2
] Rd*>. C 52)

oJ xx y y 2

In equation (5) M w and My are the moments on the cross

section due to bending and M x is the moment on the beam

cross section brought on by the twisting action due to load

P and moment H zt . For a load placed on the beam in the "y"

direction the M x term is zero.
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M. = -PRsinCa - *0 c 62)
X

and

M = PRC1 - cosCa - <p1 . C7Z)
zp

Applying Castigliano'a second theorem yields:

(dV/dP) = d. (8)

Combining equations 5, 6, 7, and 8 yields the following

expression for the deflection of a curved beam in bending

and torsion due to the applied load P.

d = f°PR[Csin 2
Ccx - ^O } /EI + CI - cosCa - *0 D

2
/C] d*>. C 9D

O J x

For the semi-circular beam of figure 7-6 the central angle

is equal to n , the location of the load is equal to n/2,

I M is the x - component moment of inertia and C the

torsional rigidity of the beam. Carrying out the

integration of equation (9) yields:

d = P(.655>. (10)

For the case of three degrees of angular misalignment d is

.014 inches. Inserting this value into equation (8) yields

the load required to accomplish the deflection.

P = .022 lbs. (11)
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The total angular twist imposed on the flexible wafer by the

shafts angular misalignment has two components; the

component due to the imposed load and the component

due to the applied moment M at . The maximum angular twist on

the beam is .026 radians which occurs at the point of the

applied load and moment. Assuming linearity, the angle of

twist per unit length around the circumference equates to

.03 radians per inch. Therefore, the twist per unit length

due to the load (P> can be expressed as:

6 = M /C CI 2D
P *P

where

M^ = PRC1 - cosCa - *0 D . C 1 3D

Solving equation (12) yields S = .0148 radians per inch.

Thus the twist per unit length due to the applied moment

(M lt ) can be expressed as:

t max p C 1 4J

where e
mcxx is the maximum twist per unit length. Utilizing

equation (14) determines: 6 = .0153 radians per inch.

Solving for the applied twisting moments:

M xt = e
t
/GC (15)

136





yields:

M = . 01255C1 - cosCa - <p DD.
Zt

Using the principles of superposition the sum of the

twisting moments is:

M x = M Ifa M,* (16)

which yields:

M = . 03C1 - cosCa - *OD. C 1 7D
z

The stresses at any particular cross section can be written

as

:

a = M c/I , CI 8}
X

t = M /C CI 9Z>
Z O

where c is the distance to the neutral axis; and Ce, the

polar moment of inertia, is equal to l/Sba*2 for a thin beam.

Solving for the maximum stress due to the bending and

torsion combination (which occurs at the endpoints) yields:

o = 2836 psi

t = 3519 psi

137





Inserting these values into equation (3) yields the maximum

stress due to the combined bending and twisting.

t = 3793 psi

A typical value for the endurance limit of stainless steel

is 25,000 psi. The cyclic stress placed on the coupling's

flexible disk is therefore significantly less than the

design endurance limit. Consequently, for the maximum angle

of misalignment fatigue failure of the Renbrandt coupling

should not occur.

At this point it should be readily apparent that the

selection of a coupling for a particular application is a

complex issue. The degree of difficulty depends on the

application requirements. In high power high speed

applications coupling issues become paramount in maintaining

service and service life as well as protecting costly

pieces of equipment.
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